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Chapter 9. On calculation of elementary 
particles’ masses 
1.0. Introduction.  
1.1. Equivalence of the energy and mass spectra 

As it is known neither classical, nor quantum theories could explain the nature of 
masses of elementary particles and could not deduce the numerical values of masses 
till now.  

The basic experimental facts are here the following: 1) masses of elementary 
particles make the discrete spectra; 2) all elementary particles are the excited states of 
a small set of some particles, which represent the lowest level of a spectrum of 
masses.  

It is supposed that discreteness of spectrum of masses of elementary particles is 
similar to a discrete spectrum of excitation energies of atom. According to the 
Einstein formula , to any rest mass corresponds the stationary level of 
energy. 

2mc=ε

1.2. Energy spectra of electron in hydrogen atom as an example of a 
spectrum of masses 

The first calculation of energy-mass spectrum of electron in hydrogen atom has 
been based on the known Bohr atom theory, in which the quantization was entered 
by a separate postulate. This approach allows the calculation of energy spectrum of 
electron, but it does not reveal the reasons of quantization. 

The reasons of quantization have been specified by de Broglie, who showed that 
elementary particles in a stationary state can be considered as standing waves, which 
formation conditions are the conditions of the length waves’ integrality.  

In his dissertation de Broglie has shown (Broglie, de, 1924; 1925;. Andrade e 
Silva and Loshak, 1972), that the orbits postulated by Bohr for electron motion 
around a hydrogen atom nucleus can be received from the condition that the length of 
an orbit  should contain an integer number of electron wavelengths L λnL =    
(where pmh hπυλ 2==  is the particle wavelength according to de Broglie, 

 is the Planck constant (usual and bar), h,h υ  is the particle velocity,  υmp =  is 
particle momentum) (see fig. 1): 
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Fig. 1 

For a , b and c of  fig.1 this condition is carried out, when n = 2, 4 and 8, 
accordingly. In case of d this condition is not carried out  and electron motion is 
unstable, that leads to self-destruction of a wave as a result of the wave interference. 
Mathematically the integrality condition corresponds to the requirement of 
unambiguity of wave function.  

A similar condition also takes place for elliptic orbits (see also (Shpolski, 1951)), 
but this case is more complex, since the length of de Broglie wave in different points 
of an elliptic orbit varies because the electron speed is not constant. In this case it is 
necessary to use the general condition of quantization: 
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,    (1.1)  

where  is the orbit length element, ds T  is the period of motion, dt  - time 
element, υβ c= . 

From the above follows that the stationarity conditions correspond to resonance 
conditions, which are adequate to conditions of integrality of the standing waves.  

Such sight at the reason of appearance of quantum levels of electron energy also 
allows to calculate the last in other similar cases. For example, as an approximate 
model of 3-dimensional short-range potential, can be the spherical potential well of 
some radius R (Naumov, 1984). According to de Broglie for the big circle of sphere 
of radius R, we will have: 
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From here, we receive for energy levels: 2

22

2mR
n

n
h

=ε . As we marked above 

(see chapter 8), the exact solution of this problems as the Helmholtz equation for de 
Broglie waves (i.e. the Schreudinger wave equation) gives only additional factor . 2π

We should note one remarkable feature, which has the solution of Schreudinger 
equation for electron in a potential well of final depth. The solution shows (Shiff, 
1955; Matveev, 1989), that in this case there is only a limit number of own levels of 
energy. Whether it is possible to extend this conclusion to elementary particle mass 
calculation (e.g. to the charge leptons, which consists from three flavors only), 
remains in doubt. 

Attempts of calculation of mass-energy spectra on the basis of resonance 
behaviour of particles exist for a long time. We will briefly mention the most 
consecutive of them.  

2.0. Present calculations of elementary particle masses 
The existing calculations are based on assumptions and guesses, which cannot 

be proved enough within the framework of the quantum field theory. 

2.1. Quasi-classical approaches to mass calculation 
According to them the basic particle assimilates to a potential well (or, that is the 

same, to the resonator of the certain configuration). The spectrum of masses of 
particles arises, when some additional resonance particle (e.g. photon) is placed in 
this potential well. Characteristics of addition particle change the characteristics 
(mass, spin, charge, etc) of the basic particle and we can consider the last one as new 
particle.  

One of the first attempts of quasi-classical calculation (for masses of muon and 
pion) belongs to K. Putilov (Putilov, 1964). Note that this calculation does not take 
into account the experimental facts, which have been found out later (e.g., the 
existence of a tau-lepton, the law of lepton number conservation, etc.) and it should 
be considered only as an example of a corresponding computational procedure. 

A second, much more detailed calculation (for the big number of particles, 
known at that time) is stated in the paper (Kenny, 1974). Here the author gives 
already the theoretical substantiation of a calculation method and receive impressing 
results. But calculation is made by analogy to the theory of Bohr; as a result here 
Coulomb potential well was used. The obtained numerical values of masses, without 
serious substantiation, are corresponded with masses of known particles.  

Another approach is based on the quantization rules of  Bohr-Wilson-
Sommerfeld. The group of scientists J.L.Ratis, F.A.Garejev and others (Ratis and 

 



  
 129 

Garejev, 1992; etc) has achieved especially impressive results, using the quantization 
condition for asymptotic momenta of decay products of the hadronic resonances.  

2.2. Quantum approaches to mass calculation 
The calculations, based on idea of composite  particles,  take place here. But we 

will show below that this approach has near connection to the resonance theory. 
As it is marked in the reviews (Rivero and Gsponer, 2005; Gsponer and Hurni, 

2005) one of the first possible approaches to an estimation of masses of elementary 
particles was based on the known composite model of Nambu-Barut (Nambu, 1952; 
Barut, 1979). In this approach it is postulated that for calculation of masses of heavy 
leptons to the rest mass of electron the quantized magnetic energy 

(3/2) must be added, where  is a new quantum number.  ∑
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In particular, for leptons Barut has received the following empirical formula: 
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, which gives satisfactory values for both heavy 

leptons (here  is the electron mass, em α  is electromagnetic constant). 
The authors of  the paper (Gsponer and Hurni, 2005) write: “The agreement with 

the data of this rather simple formula is surprisingly good, the discrepancy being of 
order 10-4 for the muon and 10-3 for the tau, respectively. In order to get the masses of 
the quarks, it is enough to take for the mass of the lightest quark 47.7/eu mm = . 
Again, we see in Table 1 (see below) that the agreement between the theoretical 
quark masses and the “observed” masses is quite good, especially for the three heavy 
quarks”. 

Table 1: Comparison of lepton and quark masses in Mev/c2  
calculated with Barut’s formula to measured masses. 

   Lepton masses       Quark masses 
N  Barut’s 

formula 
 
Data 

 Barut’s 
formula 

 
Data 

0 
1 
2 
3 
4 
5 
6 

 e  
µ  
τ  
 
 
 
 

0.511 
105.55 
1786.1 
10294 
37184 
 
 

0.511 
105.66 
1784.1 
? 
? 

u 
d 
s  
c  
b 
t 
 

0.068 
14.1 
239 
1378 
4978 
13766 
31989 

0-8 
5-15 
100-300 
1300-1500 
4700-5300 
? 
? 
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Recently, an expression, similar to Barut, had been received from other reasons. 
In the paper (Rodriguez and Vases, 1998) for muon mass as excited state of electron 
(which is allocated with properties of quark) the formula is received: 

m
q
e

ml
m
n

e= +
⎛

⎝
⎜

⎞

⎠
⎟1 , where q

e
nm

n =
3
2α

. E.g., for muon at n = 1 turns out: 

m meµ α
= +⎛
⎝⎜

⎞
⎠⎟ =1

3
2

206 55, me . Assuming that taon is the excited state of 

muon, authors receive also: 

m m
q
e

m ml e
m
n

e e= +
⎛
⎝⎜

⎞
⎠⎟ + = +

⎛
⎝⎜

⎞
⎠⎟ +1

3
2

1
3

2
3

2α α
n

α
, that at n = 16 gives for 

taon mass the value close to experimental, namely 9,17813494 == emmτ  
MeV.  

Other successful empirical formula is I. Koide's formula (Rivero and Gsponer, 
2005), which was descavered "on the end of year1981. I. Koide, working above 
some composite model of quarks, has had fortunate or unfortunate case to run into 
very simple correlation among three charge leptons 

( ) ( )2
3
2

τµτµ mmmmmm ee ++=++ , which gives for mass of a tau-

lepton 1777 MeV ”. 
Below we will show that there is a successive approach, which doesn’t 

contradict to quantum field theory and allows to obtain strictly enough the formulas, 
close to the formulas of K.A Putilov, A.O. Barut, W.A Rodrigues.- J. Vaz, and also 
to confirm the calculation formula of  Yu. L. Ratic – F.A. Gareev-et al. (In the 
framework of this analysis about I. Koide formula we cannot say anything). 

3.0. Statement of problems of calculation of masses of 
particles 

Without the contradiction with quantum field theory and according to CWED 
we can suppose that:  
- all particles are divided into two groups: a) absolutely stable particles: electron, 
neutrino, proton and their antiparticles;  b) metastable particles: all other particles. 
- the stable elementary particles are the simplest twirled waves 
- the metastable elementary particles are the composite (compound) twirled waves, 
appearing as superposition of an absolutely stable twirled waves and some additive 
twirled waves.  
- the metastability of compound particles is ensured by resonance conditions and by 
corresponding conservation laws.  
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As a simplest reaction of a compound particle formation it is possible to consider 
the transition of electron  in hydrogen atom from a low level to higher level of 
energy: 

−e

 ,   NeNe bn ++=+ −− )()( εγε

where bn εε > , bε  is the base electron energy,  nε  is any electron energy level, 

γ  is  the photon (gamma-quantum), and  means the nucleus field, which in this 
case as a resonator works. Note that the reaction of electron-positron pair production 
from a photon can be described formally in the same way: 

N

 ,    NeeN ++=+ +−γ
The above reactions in a general view can be presented as follows: 

 213 XXX +⇔ ,    (3.1) 

where the letter X stands for particles; the index 3 stands for the compound particle, 
and 1 and 2 – for the initial particles. For each of particles we can write the energy-
momentum conservation law: 

 ,    (3.2) 42
1

2
1

22
1 cmpc +=ε

 ,   (3.3) 42
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 ,  (3.4) 42
3

2
3

22
3 cmpc +=ε

where  is the speed of light,  in the this chapter means the particle rest mass; c m ε  
and p  are the energies and momentums respectively. For the reaction (3.1) the 
energy and momentum conservation lows are following: 

 213 εεε += ,   (3.5) 

 213 ppp rrr
+= ,   (3.6) 

3.1. Direct problem 
The record (3.1) is possible to be considered as an instruction  

 213 XXX ⇔+  

that a particle  (e.g., electron) as the resonator with known parameters absorbs a 

antiparticle  (e.g., photon)  and we must find the parameters of the resulting 

particle  (we will name this problem as direct problem).  

3X

1X

2X
It is easy to understand that the problem of this type is reduced to the solution of 

the non-linear wave equations of Heisenberg non-linear equation type. 
Unfortunately, the solution of the last, despite of a number of achievements (in 
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particular, the existence of spectra of masses of particles has really been shown), had 
difficulties, which are not overcome till now. Therefore we must try to solve below 
this problem in linear approach, taking into account the known integrated 
characteristics of an initial particle (in this case, of electron). 

3.2.“Inverse” problem 
Another statement of the problem (an “inverse” problem of particle mass 

calculation) arises in case (see (3.1)) we consider the particles 1 and 2 as composite 
parts of particle 3, but the parameters of particle 3 as resonator we don’t know.  

Let    is a compound particle with unknown mass. In the simplest case of 

motionless particle we have 
3X

03 =pr . Then from (3.24 we receive , and 

from (3.6): 

2
33 cm=ε

21 pp rr
−= . Entering a designation rppp == 21

rr
, from (3.5) with 

help (3.2-3.3.)we will receive the known kinematics expression: 

 2242
2

2242
1

2
3 rr pccmpccmcm +++= ,   (3.7) 

The question is here how to calculate . For the clarification of the last we will 
use of the de Broglie approach. 

rp

The following paragraphs will be devoted to the briefly analysis of kinematics 
and wave properties of particles, which can useful for the particle mass calculation. 

4.0. The kinematics characteristic of particles 
The energy, momentum and kinetic energy of the particles are defined by 

following relativistic expressions:  

 , δε 2mc= δυrr mp = , ( )12 −= δε mck ,    (4.1) 

where 211 βδ −= , cυβ r
= , υr  is speed of a particle.  

Since  c<υ , the expressions, containing δ , can be expanded to Maclaurin 
series (taken here into account only 4 terms): 
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 ...
2
100 3 ++++= βββδ  (4.3) 

and we can receive for energy and momentum the following expressions:  
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mmmcmcp υυββ ,   (4.6) 

At 1<<β  we obtain from (4.4)-(4.6) as first approximation the classical 
expressions: 

 clmmc ευε =+≈ 22

2
1

;  clpmp =≈ υ ; kclk m ευε =≈ 2

2
1

;  (4.7)  

where the index “cl” is for “classical”. 
So, as we showed, the enumerated above the particle-wave characteristics can be 

expanded in the convergent exponential series. With the speed of equal to zero we 
have the first term: particle with the constant mass - rest mass. When particle begins 
to move, the infinite sum of terms appears. If we take as the limitation of the series 
the maximally measurable today value of mass and will not examine the contribution 
of the terms, smaller than this mass, then it is possible to represent the following 
picture. 

The moving particle seemingly consists of the sum of several particles , 

where , and is determined by speed, so that  the mass of moving 
particle is determined by: 

iX
Ni ,...2,1,0= N

 ( ) ∑
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==
N
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i
ikmcm

0

22 βευ ,  (4.8) 

where   are the numerical coefficients of the terms of the series. 1<ik
The value is related here to the particle in “the rest”, which gives the basic 

contribution to the value of mass. With the growth of velocity it grows both the 
number  and the masses of particles with . Thus, with the sufficiently high 
speed, besides initial electron we have at the given point a set of additional particles. 
It is unintelligible if the appearance of such particles is kinematics effect or it is 
connected with interaction of particles with the physical vacuum. 

0=i

N 1≥i

The masses of the particle, additional to the rest electron, are considerably less 
than the rest mass of electron and they can be difficultly measured. For the proton the 
result is somewhat better. Since in the proton there are three point heavy quarks, the 
number of additional particles “inside” the proton at the same speed will be many 
times more than for the lepton. 

What these additional particles do present, and are there any experimental data, 
which confirm this picture? If we speak about the electron, then such data are 
unknown to us. For the proton some experiments can be interpreted in the desirable 
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sense. Actually, with the enough energy of electron-proton collision, together with 
the quarks the set of the point particles, which are called partons, is revealed. Is it 
possible to interpret these results in favor of existence of additional particles, we do 
not know. But, nevertheless, the use of these “expansions into the particles” gives the 
additional possibilities of the analysis of the behavior of particles.  

Let us examine them now from the point of view of wave mechanics. 

5.0. The wave characteristics of elementary particles 
According to de Broglie the particle with energy ε  and momentum p has, 

taking into account (4.1)-(4.3), the following frequency and wavelength:  
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In the case c<<υ  we will obtain: 
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h
≈= ,   (5.4) 

Let’s analyse these expressions.  
At first, we can note the interesting feature of de Broglie wave: it consists of 

infinite series of waves, which frequencies sum up arithmetically. 
Secondly, the “base” wave exists, which high frequency 0ν does not depend on 

the particle motion. 
Thirdly, a number of waves exist here, the frequencies of which depend on the 

velocity of the particle motion and correspond to separate terms of expansion )(υν . 

The values of the frequencies of these waves are far less than the frequency 0ν  of 
the main wave, so that these waves can modulate in some way the main wave. What 
role do these waves separately play in nature, we do not know, but their sum defines 
all wave effects of particles motion: motion of electron in the atom, diffraction of 
electron into slots and other.  
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Fourthly, the frequency of the “based” wave 0ν  of the particle defines the 

Compton wavelength of rest particle and its “bare” mass:  
0

1
νccme

e ==
h

D . 

Fifthly, at zero speed of particle motion the de Broglie wave length is equal to 
infinity, while for classical oscillator it corresponds to zero frequency of oscillation. 
But in this case for de Broglie wave frequency we obtain non-zero value 0ν  of the 

order of  Hz, which does not depend on the speed of electron motion.  1510
It is possible to tell that in this case, nature has thought up the smart mechanism: 

to the big and constant frequency of own wave of the rest electron it adds the 
frequency of an additional wave, which changes from zero to infinity, depending on 
the speed of electron motion.  

As it is known the de Broglie wave is a clearly relativistic effect, connected with 
relative motion of electron in relation to other bodies (in particular, to a proton in the 
atoms and accelerators). As the de Broglie analysis shows, the wave appearance can 
be connected with relativistic Doppler effect, but the deep reasons of this 
phenomenon remain unknown for us. 

6.0. To calculation of mass spectra of elementary 
particles 
6.1. The direct problem 

As examples of the elementary reactions of production and disintegration of 
elementary particles (see (Review of Particle Properties, 1994).) are: 

1) reaction of electron-positron pair production ; NeeN ++=+ +−γ
2) muon decay %)1(%),99( γννννµ +++=++= ±±± ee ,  and 

taon decay %)6,3(%),37,17( γννµννµτ µτµτ +++++= ±±± ,  

where 
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MeVmMeVmMeVm

e
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1,19,0,3

51,0,1777,6,105

≈<<

===

ννν

τµ

µ

,   (6.1) 

We can consider these reactions as superposition of the twirled photons and 
semi-photons. . In this case muon or taon are possibly thought of as consisting of the 
electronic linear polarized half-wave and two neutrino circularly polarized half-
waves with the opposite direction of rotation, which modulate the first.  

It is also similarly possible to consider other reactions, without the infringement 
of corresponding conservation laws; for example: 
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3) pions decay: , ; 

,where

%)98,99(µνµπ += ±± %)79,98(20 γπ =

%)19,1(0 γπ ++= −+ ee MeVm 97,1340 =π
, MeVm 57,139=±π

 

We will consider a particle  (see (3.1)) as the given resonator, and particles 

 as the unknown waves, which satisfy to resonance conditions of this 

resonator. 

3X

21 , XX

Since the unique particle, about the sizes of which we can speak with some share 
of confidence, is the electron, we will consider above three reactions, taking that the 
electron is here the lowest level of a mass spectrum. (Here instead of one photon 
(with spin one in Putilov approach, we have both neutrino and antineutrino with the 
half spin, moving to the opposite directions; therefore for simplification of 
calculation of mass we will consider two neutrino as one photon).  

As we have shown (see chapter 2) the electron equation can be considered not 
only as the quantum Dirac equation, but also in non-linear electromagnetic form as 
the equation of twirled semi-photon. Using this fact, let’s consider the Dirac electron 
equation with an external field: 

 [ ) (( ) ] 0ˆˆˆˆˆ 2
0

=+−+− ψβαεεα mcppc phph
rrr

, (6.2) 

We can group here the mass-energy part as following: 

 ( ) ( )[ ]{ } 0ˆˆˆˆˆˆˆ 2 =++−+ ψβαεααεα mcpcpc phphoo
rrrr

, (6.3) 

As the free Dirac electron equation is satisfied by any mass, we can write: 

 ( )[ ] 22 )(ˆˆˆˆ)( cmmmcpcnm adephpho +=−+= ββαεα rr
,  (6.4) 

where  is the additional mass, accepting a discrete number of 

values depending on 

)(nmm adad =
,...3,2,1=n , so that from (6.3) we obtain: 
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, (6.5) 
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r

h
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The equation (6.5), because of the term of interaction, in the general case is the 
non-linear equation of the twirled waves. Its solution generally is not yet found. 
Therefore we will simplify the problem, using resonance conditions. 
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It is possible to present the mass term in (6.5) (without coefficient ) as 

follows: 

ciβ̂

 
ade

adeade cmcmcmm
DDhhh

11)(
+=+=

+
,    (6.6) 

where are both the Compton  waves’ lengths (bar) of  the electron and of 

the additional mass, accordingly (where by definition 
ade DD ,

mcmc CC πλ 2== hD ; 

note that the value mchC =λ  also is referred to as Compton wave length). Since 
the basic wave contains an integer number of the additional waves (i.e. the basic 
wave and additional waves should be commensurable), they should satisfy the 
following condition of  wave quantization:  
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D κ= ,   (6.7) 

where κ  is the number, describing a condition of appearance of a resonance 
(longitudinal, cross-sectional resonance, etc.);  is an integer (quantum 
number). In case of propagation of a wave along the circle (as in the above problem 
(1.2)) we have 

,...3,2,1=n

πκ 2= . In case of wave propagation along the sphere radius 
4=κ , along the cylinder radius 2=κ . It is possible to assume, that generally in 

various configurations of particles and fields the constant can also accept other 
values. 

Thus, for mass term in Dirac equation (i.e. for mass of a complex elementary 
particle) we receive: 
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Since the value 13710
2 ≈== erce Dhα  represents an electromagnetic 

constant, we have α0re =D (where 22
0 cmer e=  is the classical electron 

radius). Taking this into account, from (6.8) we will receive: 
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As we have shown (Kyriakos, 2004a), the “bare” size of electron corresponds to 
Compton wave length and at polarization in physical vacuum, decreases in 

1371 ≈α  times. Thus, taking into account the polarization of vacuum, instead of 
(6.7), we should write down: 
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From here n
r

ad κ
π20 =

D
, which by substitution in the formula (6.9), gives the 

formula for mass of a compound particle: 
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Using the known constant we obtain from (6.11) following: 
- for  we receive a trivial case of electron mass 0=n eep mm = ; 

- for 1,4 == nκ : 2,110=epm MeV (that corresponds  6,105=µm MeV);  

- for 16,4 == nκ : 1755=epm MeV (that corresponds 1777=τm  MeV);  

- for 1, == nπκ : 25,140=epm  MeV (that corresponds 57,139=±π
m  

MeV).  
These results are close to the results received from K. Putilov (Putilov, 1964) 

and from other aforementioned authors. 
Although the sequence of a theoretical conclusion of the mass formula makes 

the casual concurrence improbable, however it would not be necessary to make hasty 
conclusions.  

Let’s consider now the results of particle masses’ calculation according to the 
inverse problem. 

6.2. Inverse problem. 
We will consider here a particle  of the reaction (3.1) as the unknown 

resonator, and particles 
3X

{ },..., 21 XXX i =  as the initial waves, which can select, 
proceeding from known excited states of this resonator. 

In each resonator there are no more than three sizes  (jL 3,2,1=j ), which 

define lengths of resonance waves. In conformity with requirements of appearance of 
standing waves in the resonator, we can write down, at least, three resonance 
conditions: 

 ijij nL κλ = ,   (6.12), 

where  is number of a particle defining, participating in synthesis (in our example 
),  is an integer, 

i
2,1=i ,...3,2,1=ijn jκ  is the constant dimensionless 

coefficient, defining resonance conditions. Since according to de Broglie 

ii ph=λ , the formula  (6.12) can be rewritten in the form of: 
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 ijjjij hnLp κ=⋅ ,   (6.13) 

From here at 1=ijn  we receive the following condition for lowest states of a 

particle : 3X

 constL
hp

j
jij =⋅= κ3 ,   (6.14) 

Then for any other "excited" state of a particle  we have: 3X

 ijijij
j

jij npn
L
hp ⋅== 3κ ,   (6.15) 

In case of two fusion particles ( 2=i ) we have for lowest momentums  and 
quantum numbers  values, which depend only on the index j  (namely 

) and on integers . Thus, knowing only one number for the 

given resonance, we can calculate by (3.7) the masses for different 
321 jjj ppp == jn

j . 
In works of group of Ratis, Yu.L., Garejev, F.A. et all (Ratis and Garejev, 1992; 

Garejev, Kazacha et al, 1998;, etc.) values   for the big group of hadron 

resonances, which give encouraging acknowledgement to our calculations, were 
selected. 

3jp

In case if the number of particles  is more than 2 (i.e. at ) it is 

necessary for the calculation of spectra to have additional correlations between  

for different . 

iX 2>i

ijp
i

As the samples, we present from the paper (Garejev, Kazacha, etc., 1998) the 
results of calculation of several resonances (see below the appendix). (Note that the 
paper (Garejev, Barabanov, etc., 1997) contains the analysis of some hundreds 
resonances, corresponding to the above conditions).  
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The appendix (the data is taken from (Garejev, Kazacha, etc., 1998)):  
 
Table 1. Invariant masses of the resonances which are decay along binary 
channels with momentums, which are multiple to 29,7918 MeV/c: Pn = n x 
29,7918 MeV/c 

Resonanses  Decay 
chanels    Pexp     n Pexp/n     Mexp  Mth M∆

    ±π    µνµ ±  29,79    1   29,79    139,56   139,56    -- 

 ρ (770)    mππ ±  358   12    29,83    768,5   767,56   0,94 

   f2(1810)    mππ ±  896,70   30   29,89   1815   1809,17   2,17 

  5ρ (2350)    pp   714,75   24   29,87   2359   2359,31   0,31 

   X(2850)    0Kp   171,08   6   28,51   2850   2850,0   0,0 

Table 2. Invariant masses of the resonances, which decay along binary channels 
with momentums, which are multiple to 26,1299 MeV/c:  Pn=n x 26,1299 MeV/c 
Resona
nses Decay chanels Pexp  n   Pexp/n Mexp  Mth M∆

   0π me±µ    26,12   1   26,12   134,97   134,97    -- 

  D0
0

0 fK (980)   549   21   26,14   1864,5   1863,97   0,53 

   ±D ±π0K    862   33   26,12   1869,3   1869,11   0,19 

   +Λ c
+Ξ K0)1530(   471   18   26,17   2284,9   2284,25   0,65 

  B0 −+ee    2639   101   26,13   5279,2   5278,24   0,96 

 
Unfortunately, the volume of the paper does not allow to consider other results of 
CWED and to give interpretation of many of SM results from the point of view of 
CWED. 
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